Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes

نویسندگان

  • Jim E. Griffin
  • Mark F. J. Steel
چکیده

This paper discusses Bayesian inference for stochastic volatility models based on continuous superpositions of Ornstein-Uhlenbeck processes. These processes represent an alternative to the previously considered discrete superpositions. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. We develop efficient Markov chain Monte Carlo methods which allow the estimation of such models with leverage effects. This model is compared with a two-component superposition on the daily Standard and Poor’s 500 index from 1980 to 2000. ∗Corresponding author: Jim Griffin, Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, U.K. Tel.: +44-1227-823627; Fax: +44-1227-827932; Email: [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility∗

Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Recently, Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein-Uhlenbeck process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or j...

متن کامل

Inference in Infinite Superpositions of Non-Gaussian Ornstein–Uhlenbeck Processes Using Bayesian Nonparametic Methods

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein–Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of t...

متن کامل

Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models

Continuous-time stochastic volatility models are becoming increasingly popular in finance because of their flexibility in accommodating most stylized facts of financial time series. However, their estimation is difficult because the likelihood function does not have a closed-form expression. In this paper we propose a characteristic function-based estimation method for non-Gaussian Ornstein-Uhl...

متن کامل

Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes

This paper aims to develop new methods for statistical inference in a class of stochastic volatility models for financial data based on non-Gaussian Ornstein-Uhlenbeck (OU) processes. Our approach uses indirect inference methods: First, a quasi-likelihood for the actual data is estimated. This quasi-likelihood is based on an approximative Gaussian state space representation of the OUbased model...

متن کامل

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2010